Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng

Bài 4 trang 100 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G1, G2 lần lượt là trọng tâm của các tam giác ABC, ABD. Chứng minh rằng đường thẳng G1G2 song song với đường thẳng CD.

Trả lời

2

+) Trong mặt phẳng ABC, kẻ đường trung tuyến AM (M ∈ BC).

Do G1 là trọng tâm của tam giác ABC nên AG1AM=23 .

+) Trong mặt phẳng ABD, kẻ đường trung tuyến AN (N ∈ BD).

Do G2 là trọng tâm của tam giác ABD nen AG2AN=23 .

+) Xét tam giác AMN, có AG1AM=AG2AN=23 nên G1G2 // MN (định lí Thalès đảo).

+) Xét tam giác BCD, có: M, N lần lượt là trung điểm của BC, BD

Do đó MN là đường trung bình của tam giác BCD.

Suy ra MN // CD.

Mà G1G2 // MN (chứng minh trên) nên G1G2 // CD.

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Đường thẳng và mặt phẳng trong không gian

Bài 2: Hai đường thẳng song song trong không gian

Bài 3: Đường thẳng và mặt phẳng song song

Bài 4: Hai mặt phẳng song song

Bài 5: Hình lăng trụ và hình hộp

Câu hỏi cùng chủ đề

Xem tất cả