Cho tứ diện ABCD có I và J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng đi qua I, J và cắt hai cạnh AC và AD
1.9k
16/06/2023
Thực hành 3 trang 105 Toán 11 Tập 1: Cho tứ diện ABCD có I và J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng đi qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N.
a) Chứng minh IJNM là một hình thang.
b) Tìm vị trí của điểm M để IJNM là hình bình hành.
Trả lời
a) Ta có: .
Xét tứ giác IJNM có: MN // IJ nên IJNM là hình thang.
b) Để IJNM là hình bình hành thì MN = IJ
Ta có: IJ = CD (IJ là đường trung bình của tam giác BCD) nên MN = CD và MN // CD nên MN là đường trung bình của tam giác ACD. Khi đó M là trung điểm của AC.
Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 3
Bài 1: Điểm, đường thẳng và mặt phẳng trong không gian
Bài 2: Hai đường thẳng song song
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Phép chiếu song song