Cho tam giác nhọn ABC có ba đường cao AM, BN, CP Chứng minh tứ giác BDCH là hình bình hành

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP cắt nhau tại H. Qua B kẻ tia Bx vuông góc với AB. Qua C kẻ tia Cy vuông góc với AC. Gọi D là giao điểm của Bx và Cy (Hình 15).

Cho tam giác nhọn ABC có ba đường cao AM, BN, CP Chứng minh tứ giác BDCH là hình bình hành (ảnh 1)

Trả lời

Do AM, BN, CP là đường cao của ∆ABC nên AM BC, BN AC, CP AB

Do CP AB, BD AB nên CP // BD.

Do BN AC, CD AC nên BN // CD

Tứ giác BDCH có BD // CH, BH // CD nên BDCH là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả