Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng: a) ∆ABC ᔕ ∆HAC và CA^2 = CH . CB.
10
29/10/2024
Cho tam giác ABC vuông tại A có đường cao AH. Từ H kẻ đường thẳng HE vuông góc với AB (E thuộc AB). Chứng minh rằng:
a) ∆ABC ᔕ ∆HAC và CA2 = CH . CB.
b) \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).
Trả lời
Lời giải
a) Vì AH là đường cao trong tam giác ABC nên AH vuông góc với BC.
Tam giác ABC vuông tại A và tam giác HAC vuông tại H có:
\(\widehat C\) chung
Do đó, ∆ABC ᔕ ∆HAC (góc nhọn).
Suy ra \(\frac{{AC}}{{HC}} = \frac{{BC}}{{AC}}\) nên AC2 = CH . BC.
b)
Vì HE vuông góc với AB (E thuộc AB) nên \(\widehat {AEH} = 90^\circ \).
Ta có \(\widehat {HAE} + \widehat {CAH} = \widehat {CAB} = 90^\circ \) và \(\widehat C + \widehat {CAH} = 90^\circ \) (do tam giác CAH vuông tại H).
Do đó, \(\widehat {HAE} = \widehat C\) (cùng phụ với góc CAH).
Tam giác AHE vuông ở E và tam giác CBA vuông ở A có:
\(\widehat {HAE} = \widehat C\)
Do đó, ∆AHE ᔕ ∆CBA (hai góc nhọn bằng nhau).
Suy ra: \(\frac{{AH}}{{BC}} = \frac{{HE}}{{AB}}\).