Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn

Đề bài: Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4cm và HC = 6cm.
a) Tính độ dài các đoạn AH, AB, AC
b) Gọi M là trung điểm của AC. Tính số đó góc AMB (làm tròn đến độ)
c) Kẻ AK vuông góc BM (K thuộc BM). Chứng minh: 
BKBH=BCBM

Trả lời

Hướng dẫn giải:

Tài liệu VietJack

A_ Tính độ dài các đoạn AH, AB, AC

∆ABC vuông tại A:

AH2=HB.HC=4.6=24AH=26cm

AB2=BC.HB=10.4=40AB=210cm

AC2=BC.HC=10.6=60AC=215cm

b) Gọi M là trung điểm của AC. Tính số đo góc AMB (làm tròn độ). ∆ABM vuông tại A

tgAMB=ABAM=21015=263AMB59°

c) Kẻ AK vuông góc với BM ( KBM ). Chứng minh: ΔBKC~ΔBHM

∆ABM vuông tại A có: AKBM

+ AB2 = BK.BM

∆ABC vuông tại A có: AHBC

+ AB2 = BH.BC

BK.BM=BH.BC hay BKBH=BCBM

Câu hỏi cùng chủ đề

Xem tất cả