Cho tam giác ABC vuông tại A, đường cao AH. Biết 3.AB = 2.AC. Tính sin góc ACB, tan góc ACB

Đề bài. Cho tam giác ABC vuông tại A, đường cao AH.

a) Biết 3AB = 2AC. Tính sinACB^,tanACB^.

b) Vẽ đường phân giác CK của tam giác AHC. Biết AH = 2,4 cm; BH = 1,8 cm. Tính CH, AC, CK, cosHCK^.

Trả lời

a) sinACB^=ABBC=ABAB2+AC2=ABAB2+94AB2=132AB

tanACB^=ABAC=AB32AB=23

b) Tam giác ABC vuông tại A, AH là đường cao

AH2 = BH.CH

 CH=AH2BH=2,421,8=3,2(cm)

AC=AH2+HC2 =4(cm)

Tam giác AHC có CK là đường phân giác nênHKAK=HCAC=3,24HK=45AK=49AH

HK = 49.2,4=1,067cm

cosHCK^=HCKC=HCHC2+KH2=3,23,22+1,0672=0,948.

Câu hỏi cùng chủ đề

Xem tất cả