Cho tam giác ABC vuông tại A có AH là đường cao chia cạnh huyền BC thành hai đoạn BH = 4cm

Đề bài. Cho tam giác ABC vuông tại A có AH là đường cao chia cạnh huyền BC thành hai đoạn BH = 4cm; HC = 6cm.

a) Gọi M là trung điểm của AC. Tính số đo góc AMB^ (làm tròn đến độ).

b) Kẻ AK vuông góc với BM (K thuộc BM). Chứng minh BK.BM = BH.BC.

Trả lời

a) cosAMB^=AM2+MB2-AB22.AM.MB (*)

Áp dụng hệ thức lượng trong tam giác vuông:

AH2 = BH.HC = 4.6 = 24  AH=24=26cm

AB=AH2+BH2=210cm

AC=AH2+CH2 =215cm

BC=AB2+AC2 =10cm

BM là đường trung tuyến nên ta có:

BM2=AB2+BC22-AC24=52BM=213cm

AM=MC=12AC=10cm

Thay số vào (*) ta có: cosAMB^=(10)2+(213)2-(210)22.10.213=0,15

Suy ra: AMB^81,22

b) Xét ΔABM vuông tại A có AK là đường cao nên BK.BM AB(1)

Xét ΔABC vuông tại A có AH là đường cao nên BH.BC AB2 (2)

Từ (1) và (2) suy ra BK.BM = BH.BC.

Câu hỏi cùng chủ đề

Xem tất cả