Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Đường phân giác của góc A cắt BC tại D

Bài 4 trang 57 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. Đường phân giác của góc A cắt BC tại D.

a) Tính BC, DB, DC.

b) Vẽ đường cao AH. Tính AH, HD và AD.

Trả lời

Bài 4 trang 57 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

a) Tam giác ABC vuông tại A, áp dụng định lí Pythagore, ta có: 

BC2=AC2+AB2 suy ra BC = 5 cm

AD là tia phân giác góc A nên DBDC=ABAC suy ra DB5-DB=34

4DB=15-3DBDB=157(cm).

Do đó DC=BC-DB=5-157=207(cm).

Vậy BC = 5 cm, DB=157cmDC=207cm

b) Ta có: SABC=12AB.AC=12AH.BC

AH=AB.ACBC=3.45=125(cm)

Tam giác ABH vuông tại H nên 

HB=AB2-AH2=32-1252=95(cm)

Ta có: HD=DB-HB=157-95=1235(cm)

Tam giác ABH vuông tại H nên 

AD=HD2+AH2=12352+1252=1227cm

Vậy AH=125cmHD=1235cmAD=1227cm.

Xem thêm các bài giải SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Định lí Thalès trong tam giác

Bài 2: Đường trung bình của tam giác

Bài 3: Tính chất đường phân giác của tam giác

Bài tập cuối chương 7

Bài 1: Hai tam giác đồng dạng

Bài 2: Các trường hợp đồng dạng của hai tam giác

Câu hỏi cùng chủ đề

Xem tất cả