Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.

b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.

c) Chứng minh CE = CB.

Trả lời

a) Xét tam giác AKB và AKC có:

AB = AC (giả thiết)

KB = KC (do K là trung điểm của BC)

AK chung

Do đó: AKB = AKC(c.c.c) (đpcm)

AKB^=AKC^

AKB^+AKC^=BKC^=180°

Do đó: AKB^=AKC^=90°

AKBC (đpcm)

b) 

Ta thấy: ECBC; AKBC (đã cm ở phần a)

EC // AK (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên B^=45°

Tam giác CBE vuông tại C có B^=45°

E^=180°C^+B^=180°90°+45°=45°

E^=B^ nên tam giác CBE cân tại C. Do đó CE = CB (đpcm)

Câu hỏi cùng chủ đề

Xem tất cả