Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A, gọi B’ là điểm đối xứng với C qua B

Bài 6 trang 103 SBT Toán 10 Tập 1: Cho tam giác ABC, gọi A’ là điểm đối xứng với B qua A, gọi B’ là điểm đối xứng với C qua B, gọi C’ là điểm đối xứng với A qua C. Chứng minh rằng với một điểm O tùy ý, ta có: OA+OB+OC=OA'+OB'+OC'.

 

Trả lời

A’ là điểm đối xứng với B qua A nên AB = AA'.

B’ là điểm đối xứng với C qua B nên BC = BB'.

C’ là điểm đối xứng với A qua C nên CA = CC'.

Ta có:

Sách bài tập Toán 10 Bài tập cuối chương 5 - Chân trời sáng tạo (ảnh 1)

Vậy OA+OB+OC=OA'+OB'+OC'.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Tích của một số với một vectơ

Bài 4: Tích vô hướng của hai vectơ

Bài tập cuối chương 5

Bài 1: Số gần đúng và sai số

Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ

Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu

Câu hỏi cùng chủ đề

Xem tất cả