Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H
Bài 7 trang 66 SBT Toán 7 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H. Chứng minh rằng
Bài 7 trang 66 SBT Toán 7 Tập 2: Cho tam giác ABC có ba đường phân giác AD, BE, CF đồng quy tại I. Vẽ IH vuông góc với BC tại H. Chứng minh rằng
Vì BI là phân giác của góc ABC nên .
Vì CI là phân giác của góc ACB nên .
Vì AI là phân giác của góc ACB nên .
Ta có: (hai góc kề bù).
Do đó (1)
Trong AIC có (tổng ba góc trong một tam giác).
Suy ra (2)
Từ (1) và (2) ta có:
Nên .
Trong CAB ta có: (tổng ba góc trong một tam giác)
Nên
Suy ra (3)
Vì tam giác BIH vuông tại H nên .
Suy ra (4)
Từ (3) và (4) suy ra .
Vậy .
Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Bài 8: Tính chất ba đường cao của tam giác
Bài 9: Tính chất ba đường phân giác của tam giác
Bài 1: Làm quen với yếu tố ngẫu