Câu hỏi:
26/01/2024 69
Cho ∆ABC cân tại A. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho AD = AE. Kết luận nào sau đây đúng?
Cho ∆ABC cân tại A. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho AD = AE. Kết luận nào sau đây đúng?
A. \[\widehat {BDC} < \widehat {BEC}\];
A. \[\widehat {BDC} < \widehat {BEC}\];
B. BE = CD;
B. BE = CD;
C. BD > EC;
C. BD > EC;
D. \[\widehat {ABE} \ne \widehat {ACD}\].
D. \[\widehat {ABE} \ne \widehat {ACD}\].
Trả lời:
Đáp án đúng là: B
Ta xét từng đáp án:
+ Đáp án B, D:
Vì ∆ABC cân tại A nên ta có AB = AC và \[\widehat {ABC} = \widehat {ACB}\].
Xét ∆ABE và ∆ACD, có:
\[\widehat {BAC}\] là góc chung.
AB = AC (chứng minh trên).
AD = AE (giả thiết).
Do đó ∆ABE = ∆ACD (cạnh – góc – cạnh).
Suy ra BE = CD và \[\widehat {ABE} = \widehat {ACD}\] (cặp cạnh và cặp góc tương ứng).
Do đó đáp án B đúng, đáp án D sai.
Đến đây ta có thể chọn đáp án B.
+ Đáp án C:
Ta có A, D, B thẳng hàng. Suy ra BD = AB – AD.
Ta có A, E, C thẳng hàng. Suy ra EC = AC – AE.
Ta có AB = AC (chứng minh trên) và AD = AE (giả thiết).
Suy ra AB – AD = AC – AE.
Do đó BD = EC.
Do đó đáp án C sai.
+ Đáp án A:
Xét ∆BDC và ∆CEB, có:
BC là cạnh chung.
BD = EC (chứng minh trên).
\[\widehat {DBC} = \widehat {ECB}\] (chứng minh trên).
Do đó ∆BDC = ∆CEB (cạnh – góc – cạnh).
Suy ra \[\widehat {BDC} = \widehat {CEB}\] (cặp góc tương ứng).
Do đó đáp án A sai.
Vậy ta chọn đáp án B.
Đáp án đúng là: B
Ta xét từng đáp án:
+ Đáp án B, D:
Vì ∆ABC cân tại A nên ta có AB = AC và \[\widehat {ABC} = \widehat {ACB}\].
Xét ∆ABE và ∆ACD, có:
\[\widehat {BAC}\] là góc chung.
AB = AC (chứng minh trên).
AD = AE (giả thiết).
Do đó ∆ABE = ∆ACD (cạnh – góc – cạnh).
Suy ra BE = CD và \[\widehat {ABE} = \widehat {ACD}\] (cặp cạnh và cặp góc tương ứng).
Do đó đáp án B đúng, đáp án D sai.
Đến đây ta có thể chọn đáp án B.
+ Đáp án C:
Ta có A, D, B thẳng hàng. Suy ra BD = AB – AD.
Ta có A, E, C thẳng hàng. Suy ra EC = AC – AE.
Ta có AB = AC (chứng minh trên) và AD = AE (giả thiết).
Suy ra AB – AD = AC – AE.
Do đó BD = EC.
Do đó đáp án C sai.
+ Đáp án A:
Xét ∆BDC và ∆CEB, có:
BC là cạnh chung.
BD = EC (chứng minh trên).
\[\widehat {DBC} = \widehat {ECB}\] (chứng minh trên).
Do đó ∆BDC = ∆CEB (cạnh – góc – cạnh).
Suy ra \[\widehat {BDC} = \widehat {CEB}\] (cặp góc tương ứng).
Do đó đáp án A sai.
Vậy ta chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC cân tại A, M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB và AC. Kết luận nào sau đây đúng?
Cho ∆ABC cân tại A, M là trung điểm BC. Gọi D, E lần lượt là hình chiếu của M trên AB và AC. Kết luận nào sau đây đúng?
Câu 2:
Cho ∆ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy (B, c cùng phía đối với xy). Kẻ BD ⊥ xy, CE ⊥ xy. Khẳng định nào sau đây sai?
Cho ∆ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng xy (B, c cùng phía đối với xy). Kẻ BD ⊥ xy, CE ⊥ xy. Khẳng định nào sau đây sai?
Câu 3:
Cho ∆ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB. Cho các khẳng định sau:
(I) ∆ABM = ∆ACN.
(II) ∆BMC = ∆CNB.
Cho ∆ABC cân tại A. Gọi M, N lần lượt là trung điểm của AC và AB. Cho các khẳng định sau:
(I) ∆ABM = ∆ACN.
(II) ∆BMC = ∆CNB.
Câu 4:
Cho ∆ABC có \[\widehat A = 100^\circ \] và \[\widehat B = \widehat C\]. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Khẳng định nào sau đây đúng?
Cho ∆ABC có \[\widehat A = 100^\circ \] và \[\widehat B = \widehat C\]. Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Khẳng định nào sau đây đúng?
Câu 5:
Cho ∆ABC cân tại A có \[\widehat A = 36^\circ \]. Tia phân giác \[\widehat B\] cắt cạnh AC tại D. Khẳng định nào sau đây sai.
Cho ∆ABC cân tại A có \[\widehat A = 36^\circ \]. Tia phân giác \[\widehat B\] cắt cạnh AC tại D. Khẳng định nào sau đây sai.
Câu 6:
Cho ∆ABC cân tại A. Gọi I là trung điểm BC. Trên cạnh AB lấy điểm D, trên cạnh DI lấy điểm E sao cho I là trung điểm DE. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC cân tại A. Gọi I là trung điểm BC. Trên cạnh AB lấy điểm D, trên cạnh DI lấy điểm E sao cho I là trung điểm DE. Khẳng định nào sau đây đúng nhất?
Câu 7:
Cho ∆ABC cân tại A. Trên tia đối của tia AB và AC lấy điểm D và E sao cho AD = AE. Vẽ đường trung tuyến AM của ∆ABC. Tia đối của tia AM cắt DE tại H. Kết luận nào sau đây sai?
Cho ∆ABC cân tại A. Trên tia đối của tia AB và AC lấy điểm D và E sao cho AD = AE. Vẽ đường trung tuyến AM của ∆ABC. Tia đối của tia AM cắt DE tại H. Kết luận nào sau đây sai?
Câu 8:
Cho ∆ABC cân tại A có \[\widehat A < 90^\circ \]. Kẻ BD ⊥ AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Khẳng định nào sau đây đúng?
Cho ∆ABC cân tại A có \[\widehat A < 90^\circ \]. Kẻ BD ⊥ AC. Trên cạnh AB lấy điểm E sao cho AE = AD. Khẳng định nào sau đây đúng?
Câu 9:
Cho ∆ABC cân tại A, gọi M là trung điểm BC. Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Khẳng định nào sau đây đúng?
Cho ∆ABC cân tại A, gọi M là trung điểm BC. Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC tại E. Khẳng định nào sau đây đúng?