Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (Hình 58). Hình thoi ABCD có là hình bình hành hay không
223
08/11/2023
Hoạt động 2 trang 113, 114 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O (Hình 58).
a) Hình thoi ABCD có là hình bình hành hay không?
b) Hai đường chéo AC và BD có vuông góc với nhau hay không?
c) Hai tam giác ABC và ADC có bằng nhau hay không? Tia AC có phải là tia phân giác của hay không?
Trả lời
a) Do ABCD là hình thoi nên AB = BC = CD = DA.
Xét tứ giác ABCD có: AB = CD, AD = BC nên ABCD là hình bình hành.
b) Do ABCD là hình bình hành nên OB = OD.
Xét ΔOAD và ΔOAB có:
OA là cạnh chung;
AD = AB (chứng minh trên);
OD = OB (chứng minh trên).
Do đó ΔOAD = ΔOAB (c.c.c)
Suy ra (hai góc tương ứng)
Mà . (hai góc kề bù)
Do đó hay AC ⊥ BD tại O.
c) Xét ΔABC và ΔADC có:
AC là cạnh chung;
AB = AD (chứng minh câu a);
BC = DC (chứng minh câu a)
Do đó ΔABC = ΔADC (c.c.c)
Suy ra (hai góc tương ứng)
Nên AC là tia phân giác của .
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
Bài 3: Hình thang cân
Bài 4: Hình bình hành