Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh
Bài 2 trang 115 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:
AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Bài 2 trang 115 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:
AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Do đó AC = 2OA, BD = 2OB.
Ta có: AC2 + BD2 = (2OA)2 + (2OB)2 = 4OA2 + 4OB2 = 4(OA2 + OB2).
Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:
AB2 = OA2 + OB2
Suy ra AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác: