Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) trùng với trọng tâm tam giác ABD.Mặt bên (SAB) tạo với đáy một góc bằng 60°.Tính theo a khoảng cách từ B đến mặt phẳng (SAD).

Trả lời
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc (ảnh 1)

+ Xác định góc của (SAB) và mặt phẳng đáy.

Gọi G là trọng tâm tam giác ABD và E là hình chiếu của G lên AB. Ta có:

AB ^ SG và AB ^ GEÞ AB ^ (SEG) Þ AB ^ SE.

SE ^ AB và GE ^AB\(\left( {\widehat {\left( {SAB} \right)\,,\,\left( {ABCD} \right)}} \right) = \widehat {SEG} = 60^\circ \)

+ Xác định khoảng cách từ B đến mặt phẳng (SAD).

Hạ GN ^ AD. Tương tự như trên, ta có: AD ^ GN và AD ^ SGÞ AD ^ (SGN)

Hạ GH ^ SN, ta có GH ^ (SAD) suy ra khoảng cách từ G đến (SAD) là GH.

+ Tính GH.

Trong tam giác vuông SGN, ta có: \(\frac{1}{{G{H^2}}} = \frac{1}{{G{S^2}}} + \frac{1}{{G{N^2}}}\) (1)

Do GN // AB nên \(\frac{{GN}}{{BA}} = \frac{{MG}}{{MB}} = \frac{1}{3}\)

Ta có: \[GN = \frac{{BA}}{3} = \frac{a}{3}\]

Trong tam giác SGE, ta được \(GS = GE\,.\,\tan 60^\circ = \frac{{a\sqrt 3 }}{3}\) (Do GE = GN)

Thế vào (1) ta được:

\(\frac{1}{{G{H^2}}} = \frac{1}{{G{S^2}}} + \frac{1}{{G{N^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{a}{3}} \right)}^2}}} = \frac{{36}}{{3{a^2}}}\)

\( \Rightarrow GH = \frac{{a\sqrt 3 }}{6}\)

Ta có: M Î(SAD) và  MB= 3MG

\( \Rightarrow d\left( {B,\;\left( {SAD} \right)} \right) = 3d\left( {G,\;\left( {SAD} \right)} \right) = 3\,.\,\frac{{a\sqrt 3 }}{6} = \frac{{a\sqrt 3 }}{2}\).

Câu hỏi cùng chủ đề

Xem tất cả