Cho hình chóp SABC có đáy ABC là tam giác đều cạnh 2a  , hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy.

Cho hình chóp SABC có đáy ABC là tam giác đều cạnh 2a  , hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy. Góc giữa cạnh bên SB và mặt phẳng (ABC) là 60° . Tính thể tích V  khối chóp SABC  .

A. V=a3212

B. V=a323

C. V=a32

D. V=2a3

Trả lời

Chọn D

Cho hình chóp SABC có đáy ABC là tam giác đều cạnh 2a  , hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy. (ảnh 1)

Do hai mặt bên  ( SAB) và ( SAC)  cùng vuông góc với đáy nên suy ra SAABC .

SB,ABC^=SBA^=60o.

Trong tam giác vuông SAB  , ta có SA=AB.tanSBA^=23a    .

Vậy VS.ABC=13SASΔABC=1323a2a234=2a3  .

Câu hỏi cùng chủ đề

Xem tất cả