Cho hình chóp S.ABC có SA = SB = SC = 2, góc ASB = 90 độ, góc BSC = 60 độ, góc CSA = 120 độ Diện tích mặt cầu ngoại tiếp hình chóp bằng:
Cho hình chóp S.ABC có SA = SB = SC = 2, Diện tích mặt cầu ngoại tiếp hình chóp bằng:
A.
B.
C.
D.
A.
B.
C.
D.
Chọn C
Ta có SB = SC = 2, suy ra tam giác BSC đều => BC =2.
Lại có SA = SC = 2, suy ra tam giác ASB vuông cân tại S .
Mặt khác, SA = SC = 2, , áp dụng định lí cosin cho tam giác ASC, ta được:
.
Xét tam giác ABC có suy ra tam giác ABC vuông tại B.
Gọi H là trung điểm của cạnh AC suy ra H là tâm đường tròn ngoại tiếp tam giác ABC.
Mà SA = SB = SC .
Trong mặt phẳng (SAC) kẻ đường trung trực canh SC cắt đường thẳng SH tại I suy ra là tâm mặt cầu ngoại tiếp hình chóp.
Xét tam giác vuông ASH vuông tại H có .
Ta có
Diện tích mặt cầu ngoại tiếp chóp là. .