Cho hình bình hành ABCD tâm O. Gọi M,  theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt

Bài 4.59 trang 70 SBT Toán 10 Tập 1: Cho hình bình hành ABCD tâm O. Gọi M,  theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác  có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.

a) Hãy chỉ ra những vectơ bằng vectơ AB; những vectơ cùng hướng với AB; 

b) Chứng minh rằng BI = IJ = JD.

Trả lời

Sách bài tập Toán 10 Bài tập cuối chương 4 - Kết nối tri thức (ảnh 1)

a) ABCD là hình bình hành có M, N lần lượt là trung điểm của BC, AD

Nên MN là đường trung bình của hình bình hành

 MN // AB // DC và MN = AB = DC.

 AB=DC=MN

Vậy những vectơ bằng vectơ AB là: AB;DC;MN.

Lại có O là tâm hình bình hành nên O là trung điểm của AC và BD

Do đó NO là đường trung bình của DADC

 NO // DC

Chứng minh tương tự ta cũng có OM // DC

Do đó ba điểm M, O, N thẳng hàng.

Vậy những vectơ cùng hướng với AB là: AB,NO,OM,NM,DC.

b) Xét tam giác ABC có: AM, BO là hai đường trung tuyến của tam giác

Mà AM cắt BO tại I

Do đó I là trọng tâm của DABC.

BI=23BO và OI=12BI (tính chất trọng tâm)   (1)

Tương tự ta cũng có J là trọng tâm của DADC.

DJ=23DO và OJ=12DJ (tính chất trọng tâm)  (2)

Mặt khác BO = DO (do O là trung điểm của BD)   (3)

Từ (1), (2) và (3) ta có: Sách bài tập Toán 10 Bài tập cuối chương 4 - Kết nối tri thức (ảnh 1)

Mà Sách bài tập Toán 10 Bài tập cuối chương 4 - Kết nối tri thức (ảnh 1)

Vậy BI = IJ = JD.

Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:

Bài 10: Vectơ trong mặt phẳng tọa độ

Bài 11: Tích vô hướng của hai vectơ

Bài tập cuối chương 4

Bài 12: Số gần đúng và sai số

Bài 13: Các số đặc trưng đo xu thế trung tâm

Bài 14: Các số đặc trưng đo độ phân tán

Câu hỏi cùng chủ đề

Xem tất cả