Cho Hình 43 có AB = AD, góc ABC = góc ADC = 90°. Chứng minh góc ACB = góc ACD

Bài 2 trang 83 Toán 7 Tập 2:

Cho Hình 43 có AB = AD, ABC^=ADC^=90°. Chứng minh ACB^=ACD^. 

Giải Toán 7 Bài 4 (Cánh diều): Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh (ảnh 1) 

Trả lời

GT

ABC, ∆ADC

AB = AD

ABC^=ADC^=90°.

KL

ACB^=ACD^.

Chứng minh (Hình 43):

Vì ABC có ABC^=90° (giả thiết) nên ABC vuông tại B.

Vì ∆ADC có ADC^=90° (giả thiết) nên ∆ADC vuông tại D.

Xét hai tam giác ABC (vuông tại B) và tam giác ADC (vuông tại D) có:

AC là cạnh chung

AB = AD (giả thiết)

Suy ra ABC = ∆ADC (cạnh huyền – cạnh góc vuông)

Do đó ACB^=ACD^ (hai góc tương ứng)

Vậy ACB^=ACD^

Xem thêm lời giải bài tập Toán lớp 7 Cánh diều hay, chi tiết khác:

Bài 2: Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

Bài 3: Hai tam giác bằng nhau

Bài 4: Trường hợp bằng nhau thứ nhất của tam giác: cạnh – cạnh – cạnh

Bài 5: Trường hợp bằng nhau thứ hai của tam giác: cạnh – góc – cạnh

Bài 6: Trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc

Bài 7: Tam giác cân

Câu hỏi cùng chủ đề

Xem tất cả