Cho hàm số y = f(x) có đạo hàm liên tục trên R và f(0) = 0. Đồ thị hàm số y = f’(x) như hình vẽ bên dưới.

Cho hàm số y = f(x) có đạo hàm liên tục trên   f(0) = 0. Đồ thị hàm số y = f’(x) như hình vẽ bên dưới.

Cho hàm số y = f(x) có đạo hàm liên tục trên R và f(0) = 0. Đồ thị hàm số y = f’(x) như hình vẽ bên dưới. (ảnh 1)

Có bao nhiêu số nguyên dương a để hàm số y=2fsinx3cos2xa+9 đồng biến trên khoảng 0;π2?

A. 9

B. 5

C. 8

D. 6

Trả lời

Đáp án đúng là: D

Ta có: y=2fsinx312sin2xa+9=2fsinx+6sin2x+6a

Đặt t=sinx,  t0;1.

Khi đó, ta có: y=2ft+6t2+6a=2ft+6t2+6a2

Ta có: y'=2ft+6t2+6a2f't+12t2ft+6t2+6a2.

Để hàm số đồng biến trên (0;1) thì

y'>0,t0;12ft+6t2+6a2f't+12t>0,t0;1.(1)

Dựa vào đồ thị f'(t) ta thấy 2f't+12t>0,t0;1.

Do đó, 12ft+6t2+6a>0,t0;1

a<2ft+6t2+6,t0;1amin0;12ft+6t2+6.

Xét hàm số gt=2ft+6t2+6 trên [0;1].

Ta có: g't=2f't+12t>0,t0;1 suy ra hàm số g(t) đồng biến trên (0;1)

Do đó, min0;1gt=g0=2f0+6.02+6=6.

Vậy a6. Mà a* suy ra a1,2,3,4,5,6.

Câu hỏi cùng chủ đề

Xem tất cả