Cho hàm số f(x) có đạo hàm xác định trên R là f'(x)=x(x^2-1) căn x^2+3

Cho hàm số f(x) có đạo hàm xác định trên R là f'x=xx21x2+3. Giả sử a, b là hai số thực thay đổi sao cho a<b1. Giá trị nhỏ nhất của fafb bằng
A. 36415
B. 3336415
C. 35
D. 1135.

Trả lời
Chọn D
Ta có: y'=f'x  =  xx21x2+3 suy ra y=fx=xx21x2+3dx
Đặt t=x2+3t23=x2xdx=tdt
Suy ra
xx21x2+3dx=t24t2dt=t44t2dt=t5543t3+C, với C là hằng số.
Từ đó: fx=x2+32x2+35    4x2+3x2+33+C
Mặt khác f'x=0xx21x2+3=0x=0x=±1.
Bảng biến thiên
Media VietJack
Dựa và bảng biến thiên, ta có nhận xét:
Trên khoảng ;1 hàm nghịch biến, do đó với a<b<1fa>fb nên fafb>0.
Trên đoạn 1;1, để fafb đạt GTNN thì f(a) đạt GTNN và f(b) đạt GTLN.
Do đó a=1b=0, vì a<b1.
Suy ra giá trị nhỏ nhất của fafb=f1f0.
Vậy f1f0=16.2516.239351233=3336415

Câu hỏi cùng chủ đề

Xem tất cả