Cho hai số phức z1, z2 thoả mãn đồng thời hai điều kiện sau |z - 1|= căn 34, |z+1+mi|=|z+m + 2i| (trong đó m là tham số thực)

Cho hai số phức z1,z2 thoả mãn đồng thời hai điều kiện sau z1=34,  z+1+mi=z+m+2i (trong đó m là tham số thực) và sao cho z1z2 là lớn nhất. Khi đó giá trị z1+z2 bằng

A. 34

B. 234

C. 10

D. 2

Trả lời

Đáp án đúng là: D

Cho hai số phức z1, z2 thoả mãn đồng thời hai điều kiện sau |z - 1|= căn 34, |z+1+mi|=|z+m + 2i|  (trong đó m là tham số thực)  (ảnh 1)

Đặt z=x+yi   (x,y). Khi đó z1=34x12+y2=34 (C).

Suy ra điểm biểu diễn của số phức z1,z2 nằm trên đường tròn (C) tâm I(1;0) bán kính R=34.

Lại có, z+1+mi=z+m+2ix+12+y+m2=x+m2+y+22

22mx+2m4y3=0 (d).

Suy ra điểm biểu diễn số phức z1,z2 nằm trên đường thẳng (d).

Gọi Ax0;y0 là điểm cố định mà đường thẳng (d) luôn đi qua. Khi đó, 22mx0+2m4y03=0,  m

2m(y0x0)+2x04y03=0,   m

y0x0=02x04y03=0x0=y0=32A32;32.

Ta có, IA=342<R nên điểm A nằm trong đường tròn (C).

Do đó đường thẳng (d) luôn cắt đường tròn (C) tại 2 điểm M, N và điểm M, N chính là điểm biểu diễn của số phức z1,z2.

Theo giả thiết thì z1z2=MN lớn nhất d IA .

Do đó z1+z2=OM+ON=2.OI=2.OI=2.

Câu hỏi cùng chủ đề

Xem tất cả