Cho hai hàm số f(x) = 2x^3 – x^2 + 3 và g(x) = x^3 + x^2/2 - 5. Bất phương trình f'(x) > g'(x) có tập nghiệm là

Bài 3 trang 51 Toán 11 Tập 2: Cho hai hàm số f(x) = 2x3 – x2 + 3 và gx=x3+x225. Bất phương trình f'(x) > g'(x) có tập nghiệm là

A. (−; 0]  [1; +).

B. (0; 1).

C. [0; 1].

D. (−; 0)  (1; +).

Trả lời

Đáp án đúng là: D

Có f'(x) = (2x3 – x2 + 3)' = 6x2 – 2x.

g'x=x3+x225'= 3x2 + x.

Để f'(x) > g'(x) thì 6x2 – 2x > 3x2 + x

 3x2 – 3x > 0  3x(x – 1) > 0

 x < 0 hoặc x > 1.

Vậy tập nghiệm của bất phương trình là: (−; 0)  (1; +).

Xem thêm các bài giải SGK Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả