Câu hỏi:

29/12/2023 81

Cho hai điểm A(2; 2), B(5; 1) và đường thẳng ∆: x – 2y + 8 = 0. Lấy điểm C ∆. Điểm C có hoành độ dương sao cho diện tích tam giác ABC bằng 17. Tọa độ của C là:

A. C(10; 12);

B. C(12; 10);

Đáp án chính xác

C. C(8; 8);

D. C(10; 8).

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Media VietJack

Ta có \(\overrightarrow {AB} = \left( {3; - 1} \right)\). Suy ra \(AB = \sqrt {{3^2} + {{\left( { - 1} \right)}^2}} = \sqrt {10} \).

Đường thẳng AB có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 1} \right)\).

Suy ra đường thẳng AB có vectơ pháp tuyến \({\vec n_{AB}} = \left( {1;3} \right)\).

Đường thẳng AB đi qua A(2; 2) và có vectơ chỉ phương \(\overrightarrow {AB} = \left( {3; - 1} \right)\).

Suy ra phương trình tổng quát của AB: 1(x – 2) + 3(y – 2) = 0.

x + 3y – 8 = 0.

Đường thẳng ∆ đi qua điểm M(–8; 0) và có vectơ chỉ phương \({\vec u_\Delta } = \left( {2;1} \right)\).

Suy ra phương trình tham số của ∆: \(\left\{ \begin{array}{l}x = - 8 + 2t\\y = t\end{array} \right.\)

Ta có C ∆. Suy ra tọa độ C(2t – 8; t).

Theo đề, ta có diện tích tam giác ABC bằng 17.

\( \Leftrightarrow \frac{1}{2}d\left( {C,AB} \right).AB = 17\).

\( \Leftrightarrow \frac{1}{2}.\frac{{\left| {2t - 8 + 3t - 8} \right|}}{{\sqrt {{1^2} + {3^2}} }}.\sqrt {10} = 17\)

|5t – 16| = 34

\( \Leftrightarrow \left[ \begin{array}{l}5t - 16 = 34\\5t - 16 = - 34\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}t = 10\\t = - \frac{{18}}{5}\end{array} \right.\)

Với t = 10, ta có C(12; 10).

Với \(t = - \frac{{18}}{5}\), ta có \(C\left( { - \frac{{76}}{5}; - \frac{{18}}{5}} \right)\).

Vậy C(12; 10) hoặc \(C\left( { - \frac{{76}}{5}; - \frac{{18}}{5}} \right)\) thỏa mãn yêu cầu bài toán.

Do đó ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phương trình đường thẳng đi qua điểm A(–2; 0) và tạo với đường thẳng d: x + 3y – 3 = 0 một góc 45° là:

Xem đáp án » 29/12/2023 264

Câu 2:

Nếu góc giữa hai đường thẳng d1: x + 2y – 7 = 0 và d2: \(\left\{ \begin{array}{l}x = 3 + 3t\\y = - 2 - mt\end{array} \right.\) bằng 30° thì m gần nhất với giá trị nào sau đây?

Xem đáp án » 29/12/2023 118

Câu 3:

Với giá trị nào của m thì hai đường thẳng d1: 2x – 3y – 10 = 0 và d2: \(\left\{ \begin{array}{l}x = 2 - 3t\\y = 1 - 4mt\end{array} \right.\) vuông góc với nhau?

Xem đáp án » 29/12/2023 94

Câu 4:

Hai chiếc ô tô A và B cùng xuất phát từ hai địa điểm, di chuyển theo đường thẳng. Trên màn hình ra đa (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo km), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của ô tô A có tọa độ được xác định bởi công thức \(\left\{ \begin{array}{l}x = 3 - 2t\\y = t\end{array} \right.\), vị trí của ô tô B có tọa độ Q(t; 3 + 2t). Góc giữa hai đường đi của hai ô tô A và B bằng:

Xem đáp án » 29/12/2023 67

Câu hỏi mới nhất

Xem thêm »
Xem thêm »