Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ 2 tiếp tuyến AM, AN và cát tuyến ABC với đường
31
14/08/2024
Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. Kẻ 2 tiếp tuyến AM, AN và cát tuyến ABC với đường tròn (AB < AC). Qua O kẻ OK vuông góc với BC tại K, OK cắt MN tại S. Chứng minh SC là tiếp tuyến của đường tròn (O).
Trả lời
Gọi AO ∩ MN ≡ H
Theo tính chất hai tiếp tuyến cắt nhau: AM = AN
Mà OM = ON nên OA là trung trực của MN
Do đó OA ⊥ MN (1)
Mặt khác BC ⊥ OK ⟹ AC⊥ OS ⟹ (2)
Từ (1) và (2) suy ra tứ giác SKHA nội tiếp (hai góc cùng nhìn một cạnh bằng nhau)
Do đó theo tính chất tứ giác nội tiếp thì: OK.OS = OH.OA (*)
Vì AM là tiếp tuyến của đường tròn (O) nên AM ⊥ OM
Xét tam giác vuông AMO có đường cao MH, theo hệ thức lượng trong tam giác vuông thì: OC2 = R2 = OM2 = OH.OA (**)
Từ (*) và (**) ⟹ OC2 = OK.OS
Do đó tam giác OCK đồng dạng với tam giác OSC (cạnh – góc – cạnh)
⇒ SC ⊥ OC ⇒ SC là tiếp tuyến của đường tròn (O).