Cho đường tròn (C) có phương trình x^2 + y^2 – 4x + 6y – 12 = 0. a) Tìm toạ độ tâm I và bán kính R
136
18/01/2024
Bài 7.57 trang 50 SBT Toán 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2 – 4x + 6y – 12 = 0.
a) Tìm toạ độ tâm I và bán kính R của (C).
b) Chứng minh rằng điểm M(5; 1) thuộc (C). Viết phương trình tiếp tuyến d của (C) tại M.
Trả lời
a)
Xét phương trình đường tròn (C) , ta có:
I (a; b) với a = – 4 : (–2) = 2, b = 6 : (–2) = –3, do đó, I (2; –3)
.
b)
Thay toạ độ điểm M vào phương trình của đường tròn (C) ta có
52 + 12 – 4.5 + 6.1 – 12 = 0 (luôn đúng)
nên điểm M thuộc đường tròn (C).
Tiếp tuyến d của (C) tại điểm M là đường thẳng đi qua M và vuông góc với IM nên có một vectơ pháp tuyến là .
Vậy phương trình của tiếp tuyến d là:
3(x – 5) + 4(y – 1) = 0
⇔ 3x + 4y – 19 = 0.
Xem thêm các bài giải SBT Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài 21: Đường tròn trong mặt phẳng tọa độ
Bài 22: Ba đường conic
Bài tập cuối chương 7
Bài 23: Quy tắc đếm
Bài 24: Hoán vị, chỉnh vị và tổ hợp
Bài 25: Nhị thức Newton