Cho các số phức z, w, u thỏa mãn |z - 4 + 2i| = |2z + z liên hợp| , (w-8-10i)/(w - 6 - 10i) là số thuần ảo và |u + 1 - 2i|=|u - 2 + i|.

Cho các số phức z, w, u  thỏa mãn z4+2i=2z+z¯,w810iw610i là số thuần ảo và \u+12i=u2+i. Giá trị nhỏ nhất của P=uz+u¯w¯ thuộc khoảng nào sau đây?

A. (0;5]

B. (5;8)

C. [8;10)

D. 10;+

Trả lời

Đáp án đúng là: B

Đầu tiên ta gọi A,  N1,  M lần lượt là các điểm biểu diễn số phức z, w, u trên mặt phẳng tọa độ Oxy.

Khi đó ta có:Aa;b:z4+2i=2z+z¯Mc;d:u+12i=u2+iAP:y=2x2+2x5Md:y=x

Đặt w=x+yix,y, khi đó

e=w810iw610i=kikw810iw610i¯=mim

w810iw¯6+10i=w2+6+10iw8+10iw¯+14820i (2)

Thế w=x+yix,y vào (2) kết hợp biến đổi đại số, ta được Ree=x214x+y220y+148=0.

Suy ra NC:x72+y102=1, tức N1 thuộc đường tròn tâm I17;10, bán kính R = 1.

Khi đó ta luôn có: P=uz+uw¯=uz+uw=MA+MN1MA+MI11

Gọi I2 là điểm đối xứng với I17;10 qua (d), khi đó ta suy ra I210;7 tức N2I2;1.

Khi đó ta có hình vẽ như sau:

Cho các số phức z, w, u  thỏa mãn |z - 4 + 2i| = |2z + z liên hợp| , (w-8-10i)/(w - 6 - 10i) là số thuần ảo và  |u + 1 - 2i|=|u - 2 + i|.  (ảnh 1)

Từ hình vẽ, ta dễ dàng suy ra: P=MA+MI11=MA+MI21=MA+MN2

Mặt khác theo bất đẳng thức đường gấp khúc ta luôn có: MA+MN2AN2 nên PAN2=AI21 khi N2N0 tức Pmin khi và chỉ khi AI2 min. Lúc này ta quy về bài toán đơn giản hơn như sau:

“Cho Aa;bP:y=2x2+2x5 I210;7, khi ấy tìm giá trị nhỏ nhất của đoạn thẳng AI2”.

Lúc này ta có: AI2=a102+2a2+2a572=a102+4a2+a62.

Chạy TABLE ta suy ra AI263.8515;8.

Câu hỏi cùng chủ đề

Xem tất cả