Cho ABCD là hình bình hành. Một đường thẳng d đi qua A cắt BD, BC, DC lần lượt tại E, K, G (Hình 11)
112
20/12/2023
Bài 7 trang 60 SBT Toán 8 Tập 2: Cho ABCD là hình bình hành. Một đường thẳng d đi qua A cắt BD, BC, DC lần lượt tại E, K, G (Hình 11). Chứng minh:
a) AE2 = EK.EG;
b)
Trả lời
a) Do ABCD là hình bình hành nên AB // CD, AD // BC.
Mà K ∈ BC, G ∈ CD nên AD // BK, AB // DG.
Xét ∆AED với BK // AD, ta có (hệ quả của định lí Thalès)
Xét ∆EDG với AB // DG, ta có (hệ quả của định lí Thalès)
Suy ra nên AE2 = EK.EG.
b) Xét ∆ADE với BK // AD, ta có (hệ quả của định lí Thalès)
Xét ∆EDG với AB // DG, ta có (hệ quả của định lí Thalès)
Suy ra
Do đó
Vậy
Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:
Bài 2: Ứng dụng của phương trình bậc nhất một ẩn
Bài tập cuối chương 7
Bài 1: Định lí Thalès trong tam giác
Bài 2: Ứng dụng của định lí Thalès trong tam giác
Bài 3: Đường trung bình của tam giác
Bài 4: Tính chất đường phân giác của tam giác