Cho a, b, c thuộc Q; a, b, c đôi một khác nhau. Chứng minh rằng 1/(x - b)^2 + 1/(b - c)^2

Cho a, b, c \[\mathbb{Q}\]; a, b, c đôi một khác nhau. Chứng minh rằng \[\frac{1}{{{{(a - b)}^2}}} + \frac{1}{{{{(b - c)}^2}}} + \frac{1}{{{{(c - a)}^2}}}\] bằng bình phương của một số hữu tỉ.

Trả lời

Đặt x = a b; y = b – c; z = c – a thì x + y + z = a – b + b – c + c – a = 0

Ta có \[\frac{1}{{{{(a - b)}^2}}} + \frac{1}{{{{(b - c)}^2}}} + \frac{1}{{{{(c - a)}^2}}} = \frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}}\]

= \[{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2} - 2\,\left( {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{zx}}} \right)\]

= \[{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2} - 2\,\frac{{x + y + z}}{{xyz}}\]

= \[{\left( {\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \right)^2}\]

= \[{\left( {\frac{1}{{a - b}} + \frac{1}{{b - c}} + \frac{1}{{c - a}}} \right)^2}\] là bình phương của một số hữu tỉ

Vậy \[\frac{1}{{{{(a - b)}^2}}} + \frac{1}{{{{(b - c)}^2}}} + \frac{1}{{{{(c - a)}^2}}}\] bằng bình phương của một số hữu tỉ.

Câu hỏi cùng chủ đề

Xem tất cả