Cho a, b, c > 0 thỏa mãn phương trình a + b + c = 3. Chứng minh rằng: a/(b^2 + 1)

Cho a, b, c > 0 thỏa mãn phương trình a + b + c = 3. Chứng minh rằng:

\[\frac{a}{{{b^2} + 1}} + \frac{b}{{{c^2} + 1}} + \frac{c}{{{a^2} + 1}} \ge \frac{3}{2}\].

Trả lời

Áp dụng bất đẳng thức Cô-si, ta có:

\[\frac{a}{{{b^2} + 1}} = a - \frac{{a{b^2}}}{{{b^2} + 1}} \ge a - \frac{{a{b^2}}}{{2b}} = a - \frac{{a{b^2}}}{2}\];

\[\frac{b}{{{c^2} + 1}} = b - \frac{{b{c^2}}}{{{c^2} + 1}} \ge b - \frac{{b{c^2}}}{{2c}} = b - \frac{{cb}}{2}\];

\[\frac{c}{{{a^2} + 1}} = c - \frac{{c{a^2}}}{{{a^2} + 1}} \ge c - \frac{{c{a^2}}}{{2a}} = c - \frac{{ac}}{2}\].

Cộng ba vế bất đẳng thức lại ta được:

\[\frac{a}{{{b^2} + 1}} + \frac{b}{{{c^2} + 1}} + \frac{c}{{{a^2} + 1}} \ge a + b + c - \left( {\frac{{ab + bc + ac}}{2}} \right)\]

Ta có: \[ab + bc + ac \le \frac{{{{\left( {a + b + c} \right)}^2}}}{3} = \frac{9}{3} = 3\]

\[ \Rightarrow \frac{a}{{{b^2} + 1}} + \frac{b}{{{c^2} + 1}} + \frac{c}{{{a^2} + 1}} \ge 3 - \frac{3}{2} = \frac{3}{2}\]

Vậy \[\frac{a}{{{b^2} + 1}} + \frac{b}{{{c^2} + 1}} + \frac{c}{{{a^2} + 1}} \ge \frac{3}{2}\]

Câu hỏi cùng chủ đề

Xem tất cả