Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng 1 / (a^3 (b + c)) + 1 / (b^3

Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng:

\(\frac{1}{{{a^3}\left( {b + c} \right)}} + \frac{1}{{{b^3}\left( {c + a} \right)}} + \frac{1}{{{c^3}\left( {a + b} \right)}} \ge \frac{3}{2}\).

Trả lời

Ta có \(VT = \frac{{abc}}{{{a^3}\left( {b + c} \right)}} + \frac{{abc}}{{{b^3}\left( {c + a} \right)}} + \frac{{abc}}{{{c^3}\left( {a + b} \right)}}\)

\( = \frac{{bc}}{{{a^2}\left( {b + c} \right)}} + \frac{{ac}}{{{b^2}\left( {c + a} \right)}} + \frac{{ab}}{{{c^2}\left( {a + b} \right)}}\)

\( = \frac{{{b^2}{c^2}}}{{{a^2}bc\left( {b + c} \right)}} + \frac{{{a^2}{c^2}}}{{{b^2}ac\left( {c + a} \right)}} + \frac{{{a^2}{b^2}}}{{{c^2}ab\left( {a + b} \right)}}\).

Áp dụng bất đẳng thức Cauchy – Schwarz dạng Engel, ta có:

\(VT \ge \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{{a^2}bc\left( {b + c} \right) + {b^2}ac\left( {c + a} \right) + {c^2}ab\left( {a + b} \right)}}\)

\( = \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{abc\left( {ab + ac + bc + ab + ac + bc} \right)}}\)

\( = \frac{{{{\left( {bc + ac + ab} \right)}^2}}}{{2\left( {ab + ac + bc} \right)}} = \frac{{bc + ac + ab}}{2}\).

Áp dụng bất đẳng thức Cauchy, ta được: \[bc + ac + ab \ge 3\sqrt[3]{{{a^2}{b^2}{c^2}}} = 3\].

Vì vậy \(VT \ge \frac{{bc + ac + ab}}{2} \ge \frac{3}{2}\).

Dấu “=” xảy ra a = b = c = 1.

Vậy ta có điều phải chứng minh.

Câu hỏi cùng chủ đề

Xem tất cả