Câu hỏi:
19/01/2024 78
c) Tìm điểm M thuộc (d’): x – 2y – 1 = 0 sao cho từ M vẽ được hai tiếp tuyến đến (C) vuông góc với nhau.
Trả lời:
Hướng dẫn giải
c) Giả tử từ M ta vẽ được hai tiếp tuyến MA, MB với đường tròn (C) tại A và B.
Xét tứ giác MAIB, có: \(\widehat {MAI} = \widehat {MBI} = \widehat {AMB} = 90^\circ \) nên MAIB là hình chữ nhật.
Mà IA = IB (= R) nên MAIB là hình vuông.
Do đó IM = \(2\sqrt 2 \).
Vì M thuộc (d’): x – 2y – 1 = 0 nên M(1 + 2t; t).
\( \Rightarrow \overrightarrow {IM} \left( {2t;\,t + 1} \right)\)
\( \Rightarrow \left| {\overrightarrow {IM} } \right| = \sqrt {4{t^2}\, + {{\left( {t + 1} \right)}^2}} = \sqrt {5{t^2} + 2t + 1} = 2\sqrt 2 \)
\( \Leftrightarrow 5{t^2} + 2t + 1 = 8\)
\( \Leftrightarrow 5{t^2} + 2t - 7 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - \frac{7}{5}\end{array} \right.\)
Vậy có hai điểm M thỏa mãn yêu cầu bài toán là: M(2; 2) và \(M\left( { - \frac{{14}}{5}; - \frac{2}{5}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định vị trí tương đối của 2 đường thẳng d1, d2 biết chúng lần lượt có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;3} \right)\) và \(\overrightarrow {{n_2}} = \left( {6;9} \right)\).
Câu 2:
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:
Câu 3:
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
Câu 5:
Trong một tuần vào dịp nghỉ hè, bạn An dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn An có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?
Câu 6:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Câu 8:
Cho biểu thức (2 + x)n, biết n là số nguyên dương thỏa mãn \(A_n^3 + 2A_n^2 = 100\). Khi đó số hạng của x3 trong khai triển biểu thức (2 + x)n là:
Câu 9:
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).