Câu hỏi:

19/01/2024 177

Xác định vị trí tương đối của 2 đường thẳng d1, d2 biết chúng lần lượt có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;3} \right)\) và \(\overrightarrow {{n_2}} = \left( {6;9} \right)\).

A. d1 và d2 vuông góc với nhau;

B. d1 và d2 cắt nhau;

C. d1 và d2 song song hoặc trùng nhau;

Đáp án chính xác

D. d1 và d2 tạo với nhau một góc 30°.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta thấy \(\overrightarrow {{n_1}} = \left( {2;3} \right)\) và \(\overrightarrow {{n_2}} = \left( {6;9} \right)\) = 3. (2; 3) = 3.\(\overrightarrow {{n_1}} \)

Do đó \(\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} \) cùng phương.

Vậy d1 và d2 song song hoặc trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:

Xem đáp án » 19/01/2024 128

Câu 2:

Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.

a) Viết phương trình đường thẳng () song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).

Xem đáp án » 19/01/2024 119

Câu 3:

Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).

Xem đáp án » 19/01/2024 113

Câu 4:

Trong một tuần vào dịp nghỉ hè, bạn An dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn An có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?

Xem đáp án » 19/01/2024 110

Câu 5:

Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:

Xem đáp án » 19/01/2024 109

Câu 6:

Tìm hệ số của x6 trong khai triển (1 – x2)5.

Xem đáp án » 19/01/2024 106

Câu 7:

Cho biểu thức (2 + x)n, biết n là số nguyên dương thỏa mãn \(A_n^3 + 2A_n^2 = 100\). Khi đó số hạng của x3 trong khai triển biểu thức (2 + x)n là:

Xem đáp án » 19/01/2024 102

Câu 8:

b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).

Xem đáp án » 19/01/2024 101

Câu 9:

Từ danh sách gồm 9 học sinh của lớp 10A, bầu ra một ủy ban gồm một chủ tịch, một phó chủ tịch, một thư kí và một ủy viên. Hỏi có bao nhiêu khả năng cho kết quả bầu ủy ban này?

Xem đáp án » 19/01/2024 97

Câu 10:

Biết rằng trong khai triển \({\left( {\frac{x}{2} + \frac{a}{x}} \right)^5}\) (với x ≠ 0), hệ số của số hạng chứa \(\frac{1}{{{x^3}}}\) là 640. Khi đó giá trị của a bằng:

Xem đáp án » 19/01/2024 95

Câu 11:

Biểu thức nào sau đây là tam thức bậc hai?

Xem đáp án » 19/01/2024 93

Câu 12:

Giả sử một công việc có thể được thực hiện theo một trong ba phương án. Phương án A có 3 cách thực hiện, phương án B có 4 cách thực hiện, phương án C có 7 cách thực hiện (các cách thực hiện của cả ba phương án là khác nhau đôi một). Số cách thực hiện công việc đó là:

Xem đáp án » 19/01/2024 93

Câu 13:

Một bàn dài có hai dãy ghế ngồi đối diện nhau, mỗi dãy gồm 4 ghế. Người ta xếp chỗ ngồi cho 4 học sinh trường A và 4 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách sắp xếp, sao cho bất cứ hai học sinh nào ngồi cạnh nhau hoặc đối diện nhau khác trường với nhau?

Xem đáp án » 19/01/2024 92

Câu 14:

Trong mặt phẳng tọa độ Oxy cho điểm C có tọa độ là C(‒2; ‒5). Biểu diễn vectơ \(\overrightarrow {OC} \) theo các vectơ đơn vị là

Xem đáp án » 19/01/2024 90

Câu 15:

Cho một Parabol có tiêu điểm F. Viết phương trình chính tắc của Parabol đó biết F là trung điểm của AB và A(1; 0) và B(5; 0).

Xem đáp án » 19/01/2024 85

Câu hỏi mới nhất

Xem thêm »
Xem thêm »