Câu hỏi:
19/01/2024 128
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:
A. \(\frac{1}{2}\);
B. \(\frac{{13}}{{38}}\);
C. \(\frac{4}{{33}}\);
D. \(\frac{1}{{11}}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Có tất cả 15 + 6 = 21 người trong hội nghị.
Chọn ngẫu nhiên 3 trong số 21 người và không tính đến thứ tự thì có \(C_{21}^3 = 1\,\,330\) cách chọn.
Tức là n(Ω) = 1 330.
Gọi biến cố A: “3 người được chọn là nam”.
Chọn ngẫu nhiên 3 nam trong số 15 nam và không tính đến thứ tự thì có \(C_{15}^3 = 455\) cách chọn.
Tức là n(A) = 455.
Vậy xác suất để 3 người được chọn là nam là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{455}}{{1\,\,330}} = \frac{{13}}{{38}}\).
Ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Có tất cả 15 + 6 = 21 người trong hội nghị.
Chọn ngẫu nhiên 3 trong số 21 người và không tính đến thứ tự thì có \(C_{21}^3 = 1\,\,330\) cách chọn.
Tức là n(Ω) = 1 330.
Gọi biến cố A: “3 người được chọn là nam”.
Chọn ngẫu nhiên 3 nam trong số 15 nam và không tính đến thứ tự thì có \(C_{15}^3 = 455\) cách chọn.
Tức là n(A) = 455.
Vậy xác suất để 3 người được chọn là nam là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{455}}{{1\,\,330}} = \frac{{13}}{{38}}\).
Ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định vị trí tương đối của 2 đường thẳng d1, d2 biết chúng lần lượt có vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {2;3} \right)\) và \(\overrightarrow {{n_2}} = \left( {6;9} \right)\).
Câu 2:
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
Trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 – 2x + 2y – 2 = 0.
a) Viết phương trình đường thẳng (∆) song song với (d): 4x – 3y + 3 = 0 và tiếp xúc với (C).
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho điểm M(a; b) di động trên đường thẳng d: 2x + 5y – 10 = 0. Tìm a, b để khoảng cách ngắn nhất từ điểm A đến điểm M, biết điểm A(3; ‒1).
Câu 4:
Trong một tuần vào dịp nghỉ hè, bạn An dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn An có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (thăm một bạn không quá một lần)?
Câu 5:
Có 4 hành khách bước lên một đoàn tàu gồm 4 toa. Mỗi hành khách độc lập với nhau và chọn ngẫu nhiên một toa. Xác suất để 1 toa có 3 người, 1 toa có 1 người và 2 toa còn lại không có ai là:
Câu 7:
Cho biểu thức (2 + x)n, biết n là số nguyên dương thỏa mãn \(A_n^3 + 2A_n^2 = 100\). Khi đó số hạng của x3 trong khai triển biểu thức (2 + x)n là:
Câu 8:
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).
b) Viết phương trình đường thẳng (d) qua A(3; 2) và tiếp xúc với (C).