Đề thi Toán lớp 6 có đáp án Giữa kì 1 (Đề 6)

  • 783 lượt thi

  • 12 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Để viết tập hợp M các số tự nhiên lớn hơn 2 và nhỏ hơn hoặc bằng 8 ta viết:
Xem đáp án

Các số tự nhiên lớn hơn 2 và nhỏ hơn hoặc bằng 8 là: 3, 4, 5, 6, 7, 8.

Để viết tập hợp M các số tự nhiên lớn hơn 2 và nhỏ hơn hoặc bằng 8 ta có thể viết bằng 2 cách:

+ Liệt kê các phần tử của tập hợp: M = {3; 4; 5; 6; 7; 8};

+ Chỉ ra dấu hiệu đặc trưng: M = {x ∈ | 2 < x ≤ 8}.

Vậy chỉ có đáp án B là đúng.

Chọn đáp án B.


Câu 2:

Thứ tự thực hiện phép tính đối với biểu thức không chứa dấu ngoặc là:
Xem đáp án

Thứ tự thực hiện phép tính đối với biểu thức không chứa dấu ngoặc là:

Lũy thừa → nhân, chia → cộng, trừ

Chọn đáp án B.


Câu 3:

Tập hợp X các số tự nhiên nhỏ hơn 6 và là ước của 8 là:
Xem đáp án

Ư(8) = {1; 2; 4; 8}

Tập hợp X các số tự nhiên nhỏ hơn 6 và là ước của 8 là: X = {1; 2; 4}

Chọn đáp án C.


Câu 4:

Trong các số sau, số nào là số nguyên tố: 2; 4; 13; 19; 25; 31.
Xem đáp án

Các số nguyên tố trong các số trên là: 2; 13; 19; 31 vì các số này đều lớn hơn 1 và mỗi số chỉ có đúng 2 ước là 1 và chính nó.

Chọn đáp án B.


Câu 5:

Hình tam giác đều có mỗi góc bằng:
Xem đáp án

Tam giác đều là tam giác có ba cạnh bằng nhau, ba góc bằng nhau và bằng 60°.

Chọn đáp án A.


Câu 6:

Hãy liệt kê tên của các hình sau theo thứ tự từ trái sang phải:

Xem đáp án

Theo thứ tự từ trái sang phải có: Hình thang cân, hình chữ nhật, hình bình hành, hình thoi.

Chọn đáp án C.


Câu 7:

Trong hình vẽ dưới đây có:

Xem đáp án

Trong hình vẽ có 2 tam giác đều đó là: ABE và CDP.

Chọn đáp án A.


Câu 8:

Cho một hình vuông, hỏi nếu cạnh của hình vuông đó tăng gấp 3 lần thì diện tích của nó tăng gấp bao nhiêu lần:
Xem đáp án

Hình vuông ban đầu có cạnh là a (đvđd, a >0)

Diện tích hình vuông là: a.a

Khi cạnh tăng lên 3 lần hay cạnh là 3a thì diện tích hình vuông là: 3a.3a = 9.a.a

Vậy diện tích hình vuông tăng gấp 9 lần.

Chọn đáp án D.


Câu 9:

Thực hiện phép tính (tính hợp lý nếu có thể)

a) 467 + 238 + 533 + 762 + 3465

b) 57.115 – 57.15 + 57

c) 32.{450 : [200 – (27 + 23)5: 504]}

Xem đáp án

Lời giải:

a) 467 + 238 + 533 + 762 + 3465

= (467 + 533) + (238 + 762) + 3465

= 1000 + 1000 + 3465

= 5465

b) 57.115 – 57.15 + 57

= 57.(115 – 15) + 57

= 57.100 + 57

= 5700 + 57

= 5757

c) 32.{450 : [200 – (27 + 23)5: 504]}

= 32.[450 : (200 – 505: 504)]

= 32.[450 : (200 – 50)]

= 32.(450 : 150)

= 32. 3

= 33= 27.


Câu 10:

Tìm số tự nhiên x, y biết:

a) x – 36 : 18 = 12;

b) 2.(x – 51) = 2 . 22+ 20;

c) x ∈ Ư(30) và x >10;

d) 38xy¯ chia hết cho 2; 5 và 9.

Xem đáp án

Lời giải:

a) x – 36 : 18 = 12

x – 2 = 12

x = 12 + 2

x = 14

Vậy x = 14.

b) 2.(x – 51) = 2 . 23+ 20

2.(x – 51) = 2 . 8 + 20

2.(x – 51) = 36

x – 51 = 36 : 2

x – 51 = 18

x = 18 + 51

x = 69

Vậy x = 69.

c) x ∈ Ư(30) và x >10

x ∈ Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}

Vì x >10 nên x ∈ {15; 30}.

d) 38xy¯ chia hết cho 2; 5 và 9.

Để chia hết cho 2 và 5 thì số tận cùng phải là 0

Do đó y = 0

Ta có: 3 + 8 + x + 0 = 11 + x

Để 38xy¯ chia hết cho 9 thì (11 + x) phải chia hết cho 9

Ta thấy x = 7 thỏa mãn (vì 11 + 7 = 18 chia hết cho 9)

Vậy số cần tìm để chia hết cho 2; 5 và 9 là 3870.


Câu 11:

Một mảnh vườn hình chữ nhật có chiều dài 15 m, chiều rộng 10 m. Người ta phân ra các khu vực trồng hoa, bày tiểu cảnh và thư giãn như hình vẽ. Biết hoa sẽ được trồng trong khu vực hình bình hành EBFD.

a) Tình diện tích mảnh vườn và tổng diện tích bày tiểu cảnh và thư giãn.

b) Người chủ vườn đã thuê người về trồng hoa với chi phí mỗi mét vuông là 80 000 đồng. Tính số tiền công phải chi trả cho việc trồng hoa.

Xem đáp án

Lời giải:

a) Diện tích mảnh vườn hình chữ nhật là:

15 . 10 = 150 (m2)

Hình bình hành EBFD có cạnh DF = 5 m và chiều cao ứng với cạnh DF chính bằng chiều rộng hình chữ nhật ABCD và bằng 10 m.

Diện tích hình bình hành EBFD hay chính là diện tích phần vườn trồng hoa là:

5 . 10 = 50 (m2)

Vậy diện tích bày tiểu cảnh và thư giãn là:

150 – 50 = 100 (m2)

b) Vì chi phí trồng hoa cho mỗi mét vuông là 80 000 đồng.

Nên số tiền công phải chi trả cho việc trồng hoa là:

50 . 80 000 = 4 000 000 (đồng).


Câu 12:

Cho tổng A = 3 + 32+ 33+ … + 32021.

Tìm số dư khi chia tổng A cho 13.

Xem đáp án

Lời giải:

A = 3 + 32+ 33+ … + 32021

A + 1 = 1 + 3 + 32+ 33+ … + 32019+ 32020+ 32021

= (1 + 3 + 32) + (33 + 34+ 35) + … + (32019+ 32020+ 32021)

= 13 + 33.(1 + 3 + 32) + … + 32019.(1 + 3 + 32)

= 13 + 33.13 + … + 32019.13

= 13.(1 + 33+ … + 32019)

Vì 13 ⁝ 13 nên 13.(1 + 33+ … + 32019) ⁝ 13 (tính chất chia hết của một tích)

Do đó A + 1 chia hết cho 13

Vậy số dư khi A : 13 là 12.


Bắt đầu thi ngay