Giải SGK Toán 8 Bài 13: Hình chữ nhật
Lời giải:
Sau bài học này ta giải quyết được bài toán như sau:
Hai đầu mút của hai thanh tre tạo thành bốn đỉnh của tứ giác.
Tứ giác đó có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên tứ giác đó là hình chữ nhật.
Vậy khi các đầu mút của hai thanh tre đó tạo thành bốn đỉnh của một tứ giác thì tứ giác đó là hình chữ nhật.
1. Hình chữ nhật
HĐ1 trang 64 Toán 8 Tập 1: Trong các hình dưới đây, hình nào là hình chữ nhật? Tại sao?
Lời giải:
Tứ giác ABCD trong Hình 3.41b là hình chữ nhật vì có .
Tứ giác ABCD trong Hình 3.41a và Hình 3.41c không phải là hình chữ nhật vì không có 4 góc vuông.
Lời giải:
Ta đặt hình chữ nhật ABCD như hình vẽ.
Vì ABCD là hình chữ nhật .
Ta có: AB ⊥ AD; AB ⊥ BC suy ra AD // BC.
AB ⊥ AD; CD ⊥ AD suy ra AB // CD.
• Vì ABCD là hình chữ nhật nên AD // BC; AB // CD
Suy ra ABCD cũng là hình bình hành.
• Vì ABCD là hình chữ nhật nên AB // CD suy ra ABCD cũng là hình thang.
Hình thang ABCD có .
Do đó ABCD cũng là hình thang cân.
Lời giải:
Vì ABCD là hình chữ nhật có hai đường chéo AC và BD bằng nhau và cắt nhau tại trung điểm của mỗi đường.
Suy ra OA = OB = OC = OD.
Xét tam giác OCD cân tại O (vì OC = OD) có OH là đường cao nên OH cũng là đường trung tuyến.
Do đó CH = DH.
Vậy H là trung điểm của DC.
2. Dấu hiệu nhận biết
Lời giải:
Vì ABCD là hình bình hành nên .
Suy ra .
Ta có .
Suy ra , do đó
Mà null nên =90o.
Hình bình hành ABCD có nên là hình chữ nhật.
Lời giải:
Tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm O của mỗi đường nên tứ giác ABCD là hình bình hành.
Hình bình hành ABCD là có .
Do đó, tứ giác ABCD là hình chữ nhật.
Vận dụng trang 66 Toán 8 Tập 1: Hãy trả lời các câu hỏi trong tình huống mở đầu.
Hai thanh tre thẳng dài bằng nhau, được gắn với nhau tại trung điểm của mỗi thanh. Khi các đầu mút của hai thanh tre đó tạo thành bốn đỉnh của một tứ giác (H.3.40) thì tứ giác đó là hình gì? Tại sao?
Lời giải:
Hai đầu mút của hai thanh tre tạo thành bốn đỉnh của tứ giác.
Tứ giác đó có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên tứ giác đó là hình chữ nhật.
Vậy khi các đầu mút của hai thanh tre đó tạo thành bốn đỉnh của một tứ giác thì tứ giác đó là hình chữ nhật.
Bài tập
Lời giải:
Dùng ê ke kiểm tra bốn góc của tứ giác đó:
• Nếu bốn góc của tứ giác đều là góc vuông thì tứ giác đó là hình chữ nhật.
Tuy nhiên, vì tổng bốn góc của tứ giác bằng 360° nên nếu ba góc của một tứ giác là góc vuông thì tứ giác đó có bốn góc là góc vuông, do đó tứ giác này là hình chữ nhật.
Dùng ê ke kiểm tra được ba góc của tứ giác là góc vuông thì tứ giác đó là hình chữ nhật.
• Nếu bốn góc của tứ giác có ít nhất một góc không vuông thì tứ giác đó không là hình chữ nhật.
Giải thích: Hình chữ nhật là tứ giác có bốn góc vuông.
Lời giải:
Ta kiểm tra xem các cặp đối của tứ giác:
• Nếu các cặp cạnh đối không bằng nhau thì tứ giác đó không là hình bình hành nên cũng không là hình chữ nhật.
• Nếu các cặp cạnh đối bằng nhau thì tứ giác đó là hình bình hành.
Sau đó ta kiểm tra xem hai đường chéo của tứ giác (là hình bình hành) đó.
• Nếu hai đường chéo của hình bình hành đó bằng nhau thì tứ giác đó là hình chữ nhật.
• Nếu hai đường chéo của hình bình hành đó không bằng nhau thì tứ giác đó không là hình chữ nhật.
Lời giải:
Theo đề bài, M là trung điểm của AC, N là điểm sao cho M là trung điểm của HN.
Nên tứ giác ANCH có hai đường chéo AC và HN cắt nhau tại trung điểm M của mỗi đường.
Suy ra tứ giác ANCH là hình bình hành.
Hình bình hành ANCH có nên tứ giác ANCH là hình chữ nhật.
a) Hỏi tứ giác MPAN là hình gì?
b) Hỏi M ở vị trí nào thì đoạn thẳng NP có độ dài ngắn nhất? Vì sao?
Lời giải:
a) Tứ giác MPAN có:
Suy ra .
Tứ giác MPAN có: .
Do đó tứ giác MPAN là hình chữ nhật.
b) Vì tứ giác MPAN là hình chữ nhật có hai đường chéo AM và NP nên AM = NP.
Để đoạn thẳng NP có độ dài ngắn nhất thì AM có độ dài ngắn nhất.
Khi đó, AM là đường vuông góc kẻ từ A đến đoạn thẳng BC hay AM là đường cao của tam giác ABC.
Mà tam giác ABC vuông cân tại A nên AM cũng là đường trung tuyến.
Do đó M là trung điểm của BC.
Vậy M là trung điểm của đoạn thẳng BC thì đoạn thẳng NP có độ dài ngắn nhất.
Video bài giảng Toán 8 Bài 13: Hình chữ nhật - Kết nối tri thức
Xem thêm lời giải bài tập SGK Toán lớp 8 Kết nối tri thức hay, chi tiết khác: