Giải SBT Toán 8 (Kết nối tri thức) Bài 11: Hình thang cân
Bài 3.7 trang 34 SBT Toán 8 Tập 1: Tính các góc của hình thang ABCD (AB, CD là hai đáy) biết ,
Lời giải:
Trong hình thang ABCD có:
và là 2 góc bù nhau, và là 2 góc bù nhau.
Do đó ,
Mà nên , suy ra . Do đó
nên , hay , suy ra
Do đó
Vậy hình thang ABCD có
Bài 3.8 trang 34 SBT Toán 8 Tập 1: Chứng minh rằng trong hình thang có nhiều nhất hai góc tù.
Lời giải:
Xét hình thang ABCD có AB // CD
Ta có:
• và là hai góc kề với cạnh bên AD
Suy ra nên trong hai góc đó có có quá 1 góc tù
• và là hai góc kề với cạnh bên BC
Suy ra nên trong hai góc đó có có quá 1 góc tù
Do đó, trong bốn góc có nhiều nhất 2 góc là góc tù.
Lời giải:
Do ∆ABC vuông cân tại đỉnh A nên
Xét trong ∆ABC ta có:
Nên
Do ∆BCD vuông cân tại đỉnh B nên
Xét trong ∆BCD ta có:
Nên
Ta có nên AB // CD (hai góc so le trong bằng nhau).
Vậy ABCD là một hình thang với AB, CD là hai đáy; cạnh bên của hình thang đó là AC vuông góc với đáy AB nên hình thang đó là hình thang vuông.
Lời giải:
Do ABCD là hình thang cân nên AD = BC, AC = BD,
Xét ∆ABC và ∆BAD có
BC = AD, AC = BD, cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra .
Từ đó OAB là tam giác cân tại O, nên OA = OB.
Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD
Suy ra OC = OD.
Do đó O cách đều A và B; O cách đều C và D;
Do AB // CD nên ; (các cặp góc ở vị trí đồng vị)
Mà hay suy ra
Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
Lời giải:
Do CA là tia phân giác của nên
Mà ABCD là hình thang cân nên AB // CD, suy ra (hai góc so le trong)
Do đó, , suy ra ∆ABC cân tại B.
Đặt thì .
Vì ABCD là hình thang cân nên
Tam giác ADC vuông tại A nên suy ra
Lấy điểm M thuộc cạnh huyền DC sao cho DM = AD, mà thì AMD là tam giác đều, nên
Khi đó
Suy ra nên tam giác MAC cân tại M
Do đó AM = MC, mà AM = DM = AD
Nên AM = DM = AD = MC hay DC = 2AD.
Vậy AB = BC = AD, DC = 2AD nên chu vi hình thang bằng
AB + BC + CD + AD = 5AD = 5.2 = 10 cm.
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác: