Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S
131
08/11/2023
Bài 3.10 trang 34 SBT Toán 8 Tập 1: Cho hình thang cân ABCD với hai đường thẳng chứa hai cạnh bên AD, BC cắt nhau tại S. Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh đường thẳng SO đi qua trung điểm của AB, đi qua trung điểm của CD.
Trả lời
Do ABCD là hình thang cân nên AD = BC, AC = BD,
Xét ∆ABC và ∆BAD có
BC = AD, AC = BD, cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra .
Từ đó OAB là tam giác cân tại O, nên OA = OB.
Ta có: OA + OC = AC; OB + OD = BD, mà OA = OB, AC = BD
Suy ra OC = OD.
Do đó O cách đều A và B; O cách đều C và D;
Do AB // CD nên ; (các cặp góc ở vị trí đồng vị)
Mà hay suy ra
Suy ra SAB, SCD là các tam giác cân tại đỉnh S nên SA = SB, SC = SD
Do đó S cũng cách đều A và B, cách đều C và D.
Vậy S và O cùng nằm trên đường trung trực của AB, của CD nên đường thẳng SO đi qua trung điểm của AB, CD.
Xem thêm các bài giải Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 2
Bài 10: Tứ giác
Bài 11: Hình thang cân
Bài 12: Hình bình hành
Bài 13: Hình chữ nhật
Bài 14: Hình thoi và hình vuông