Giải Sách bài tập Toán lớp 7 Bài 7: Tính chất ba đường trung tuyến của tam giác
Bài 1 trang 60 SBT Toán 7 Tập 2: Cho tam giác ABC có trung tuyến AM và G là trọng tâm. Chứng minh:
Lời giải
a) Vẽ đường cao AH của tam giác ABC.
Vì AM là trung tuyến của tam giác ABC nên BM = CM.
Ta có : và
Hai tam giác AMB và AMC có cùng đường cao AH và có cạnh đáy bằng nhau.
Suy ra SAMB = SAMC.
Vậy SAMB = SAMC.
b) Vẽ đường cao BK của tam giác ABM.
Ta có: và
Mà G là trọng tâm của tam giác ABC nên hay AG = 2GM.
Hai tam giác ABG và BMG có cùng đường cao BK và có cạnh đáy AG = 2GM.
Suy ra SABG = 2SBMG.
Vậy SABG = 2SBMG.
c) Ta có: SAMB = SAMC (chứng minh câu a) và SAMB + SAMC = SABC
Nên
Vì G là trọng tâm của tam giác ABC nên AG = AM.
Lại có: và
Suy ra
Chứng minh tương tự ta có
Ta có SGAB + SGAC + SGBC = SABC
Mà ;
Suy ra
Do đó
Vậy SGAB = SGBC = SGAC.
Lời giải
Vẽ đường cao MH của tam giác AMB và vẽ đường cao MK của tam giác AMC.
• Xét AMH và AMK có:
,
AM là cạnh chung,
(vì AM là tia phân giác của ).
Do đó AMH = AMK (cạnh huyền – góc nhọn).
Suy ra MH = MK (hai cạnh tương ứng).
• Xét BMH và CMK có:
,
MH = MK (chứng minh trên),
BM = CM (vì AM là trung tuyến của tam giác ABC).
Do đó BMH = CMK (cạnh huyền – cạnh góc vuông).
Suy ra (hai góc tương ứng).
Xét tam giác ABC có nên tam giác ABC cân tại A.
Vậy ABC là tam giác cân tại A.
Bài 3 trang 60 SBT Toán 7 Tập 2: Cho tam giác ABC có hai trung tuyến AM và CN cắt nhau tại G
c) Tìm x biết AG = 3x – 4, GM = x.
Lời giải
a) Vì G là trọng tâm của tam giác ABC nên AG = AM.
Mà AM = 12 cm nên AG = . 12 = 8 (cm).
Vậy AM = 8 cm.
b) Vì G là trọng tâm của tam giác ABC nên hay CN = 3GN.
Mà GN = 3 cm nên CN = 3. 3 = 9 (cm).
Vậy CN = 9 cm.
c) Vì G là trọng tâm của tam giác ABC nên hay AG = 2GM.
Mà AG = 3x – 4, GM = x.
Nên 3x – 4 = 2x
Hay 3x – 2x = 4
Suy ra x = 4 (cm).
Vậy x = 4 cm.
Lời giải
Vì ABC có ba trung tuyến AM, BN, CP đồng quy tại G nên G là trọng tâm ABC, do đó ta có: .
Suy ra .
Vậy .
Lời giải
a) Xét ABH và AMH có:
,
Cạnh AH là cạnh chung,
HB = HM (giả thiết).
Do đó ΔABH = ΔAMH (c.g.c).
Vậy ΔABH = ΔAMH.
b) Vì ABC có hai đường trung tuyến AM và BN cắt nhau tại G nên G là trọng tâm tam giác ABC.
Suy ra .
Mặt khác ΔABH = ΔAMH (câu a) nên ta có AB = AM (hai cạnh tương ứng).
Suy ra .
Vậy .
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Chân trời sáng tạo hay, chi tiết nhất:
Bài 5: Đường trung trực của một đoạn thẳng
Bài 6: Tính chất ba đường trung trực của tam giác
Bài 8: Tính chất ba đường cao của tam giác