Giải Sách bài tập Toán lớp 7 Bài 5: Đường trung trực của một đoạn thẳng
Lời giải
Vì tam giác cân MAB có đáy AB nên cân tại M, do đó MA = MB.
Suy ra M thuộc đường trung trực của AB (1)
Tương tự với NAB và PAB có chung đáy AB, ta có: NA = NB, PA = PB.
Suy ra N, P cũng thuộc đường trung trực của AB (2)
Từ (1) và (2) ta có các điểm M, N, P cùng thuộc trung trực của AB.
Do đó M, N, P thẳng hàng.
Vậy ba điểm M, N, P thẳng hàng.
Lời giải
a) Ta có Ox là trung trực của MN (giả thiết).
Suy ra OM = ON (tính chất đường trung trực của một đoạn thẳng).
Vì Oy là trung trực của MP (giả thiết).
Nên OM = OP (tính chất đường trung trực của một đoạn thẳng).
Suy ra ON = OP (= OM).
Vậy ON = OP.
b) Gọi H và K lần lượt là trung điểm của MN và MP.
Xét tam giác ONH và tam giác OMH có:
ON = OM (chứng minh câu a),
NH = MH (do H là trung điểm của MN),
OH là cạnh chung.
Do đó ONH = OMH (c.c.c).
Suy ra (hai góc tương ứng).
Tương tự ta có: OKM = OKP (c.c.c).
Suy ra (hai góc tương ứng).
Ta có
Mà , (chứng minh trên).
Nên
Hay .
Vậy
Lời giải
a) Vì điểm M nằm trên trung trực của AC (giả thiết).
Suy ra MA = MC
Xét tam giác BMC có MC + MB ≥ BC (bất đẳng thức tam giác).
Hay MA + MB ≥ BC
Vậy MA + MB ≥ BC.
b) Vì MA + MB ≥ BC (chứng minh câu a).
Nên MA + MB ngắn nhất khi ba điểm B, C, M thẳng hàng.
Hay điểm M0 là giao điểm của đường thẳng BC và đường thẳng a.
Vậy điểm M0 cần tìm là giao điểm của đường thẳng BC và đường thẳng a.
Xem thêm lời giải sách bài tập Toán lớp 7 bộ sách Chân trời sáng tạo hay, chi tiết nhất:
Bài 4: Đường vuông góc và đường xiên
Bài 6: Tính chất ba đường trung trực của tam giác