Xét tính liên tục của các hàm số f(x) và g(x) tại điểm x=1/2 và nhận xét về sự khác nhau giữa hai đồ thị

HĐ2 trang 120 Toán 11 Tập 1: Cho hai hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11 với đồ thị tương ứng như Hình 5.7.

HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Xét tính liên tục của các hàm số f(x) và g(x) tại điểm x=12 và nhận xét về sự khác nhau giữa hai đồ thị.

Trả lời

+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Hàm số f(x) xác định trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.

Ta có: limx12+f(x)=limx12+1=1limx12f(x)=limx12(2x)=212=1.

Suy ra limx12+f(x)=limx12f(x)=1, do đó limx12f(x)=1

Mà f(12)=212=1 nên limx12f(x)=f(12).

Vậy hàm số f(x) liên tục tại x=12.

+) Hàm số HĐ2 trang 120 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Hàm số g(x) liên tục trên [0; 1], do đó x=12 thuộc tập xác định của hàm số.

Ta có: limx12g(x)=limx12x=12limx12+g(x)=limx12+1=1

Suy ra limx12+g(x)limx12g(x).

Vậy không tồn tại giới hạn của hàm số g(x) tại x=12, do đó hàm số g(x) gián đoạn tại x=12.

+) Quan sát Hình 5.7 ta thấy, đồ thị của hàm số y = f(x) là đường liền trên (0; 1), còn đồ thị của hàm số y = g(x) trên (0; 1) là các đoạn rời nhau.

Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối Chương 5

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Câu hỏi cùng chủ đề

Xem tất cả