Tìm giá trị của tham số m để hàm số liên tục trên ℝ

Bài 5.16 trang 122 Toán 11 Tập 1 :Tìm giá trị của tham số m để hàm số liên tục trên ℝ.

Bài 5.16 trang 122 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Trả lời

Tập xác định của hàm số là ℝ.

+) Nếu x > 0, thì f(x) = sin x. Do đó nó liên tục trên (0; +∞).

+) Nếu x < 0, thì f(x) = – x + m, đây là hàm đa thức nên nó liên tục trên (–∞; 0).

Khi đó, hàm số f(x) liên tục trên các khoảng (–∞; 0) và (0; +∞).

Do đó, để hàm số f(x) liên tục trên ℝ thì f(x) phải liên tục tại x = 0. Điều này xảy ra khi và chỉ khi limx0fx=f0limx0+fx=limx0fx=f0 (1).

Lại có: limx0+fx=limx0+sinx=0; f(0) = sin 0 = 0; limx0fx=limx0x+m=m .

Khi đó, (1) ⇔ m = 0.

Vậy m = 0 thì thỏa mãn yêu cầu bài toán.

Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:

Bài 15: Giới hạn của dãy số

Bài 16: Giới hạn của hàm số

Bài 17: Hàm số liên tục

Bài tập cuối Chương 5

Một vài áp dụng của toán học trong tài chính

Lực căng mặt ngoài của nước

Câu hỏi cùng chủ đề

Xem tất cả