Xét số phức z thỏa mãn |z - 1 - i| = 5. Khi |z - 7 - 9i| + 2|z - 8i| đạt giá trị nhỏ nhất, |z - 1| bằng

Xét số phức z thỏa mãn z1i=5 . Khi z79i+2z8i  đạt giá trị nhỏ nhất, z1  bằng

A. 1

B. 62

C. 6

D. 7

Trả lời

Đáp án đúng là: C

Đặt z = x + yi và gọi M là điểm biểu diễn số phức z trên mặt phẳng phức.

Khi đó bài toán trở thành tìm M thuộc đường tròn C:I1;1R=5  sao cho MA + 2MB đạt giá trị nhỏ nhất với A(7;9), (B(0;8).

Ta có IA=6;8IA=10=2R . Ta cần tìm điểm K sao cho MA = 2MK.

Ta có IA = 2R

Xét số phức z thỏa mãn |z - 1 - i| = 5. Khi |z - 7 - 9i| + 2|z - 8i| đạt giá trị nhỏ nhất, |z - 1| bằng (ảnh 1)

Kẻ tiếp tuyến EA của (C), khi đó tam giác AEI vuông tại E, kẻ đường cao EK của tam giác AEI. Khi đó tam giác AEI đồng dạng với tam giác EKI.

EIKI=AIEI=2KI=EI2KI=14AIK52;3

Khi đó MA+2MB=2MK+2MB2KB .

Đẳng thức xảy ra khi M là giao điểm của BK với (C).

Ta có BK:x=ty=82tMt;82t .

Ta có MCt12+72t2=5t=1x=1nt=5x=5l

M1;6z=1+6iz1=6.

Câu hỏi cùng chủ đề

Xem tất cả