Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h).

Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). Gọi (C) là thiết diện của hình nón (N) cắt bởi mặt phẳng (P) vuông góc với trục SO tại M. Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.

A. h32

B. h2

C. h3

D. h22

Trả lời

Đáp án đúng là: C

Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). (ảnh 1)

Ta có tam giác SMA' đồng dạng với tam giác SOA nên A'MAO=SMSO=SOMOSO=1xh .

Gọi V là thể tích khối nón đỉnh O đáy là (C), khi đó: V=13MOπA'M2=13xπR21xh2=hπR262xh1xh1xh

Áp dụng bất đẳng thức Cô - si

V=hπR262xh1xh1xhhπR262xh+1xh+1xh33=4hπR281.

Đẳng thức xảy ra khi 2xh=1xhx=h3 .

Câu hỏi cùng chủ đề

Xem tất cả