Có bao nhiêu m nguyên m thuộc [-2023;2023] để phương trình 5^x - 2m = log(căn bậc 4 của 5)(20(x + 1) + 10) có nghiệm?

Có bao nhiêu m nguyên m[2023;2023]  đ phương trình 5x2m=log54(20(x+1)+10m)  có nghiệm?

A. 2026

B. 2023

C. 2025

D. 2024

Trả lời

Đáp án đúng là: C

5x2m=log54(20(x+1)+10m)5x2m4=4log5(4(x+1)+2m).

Đặt t=log5(4(x+1)+2m)5t2m4=4x.

Ta được hệ 5x2m4=4t5t2m4=4x5x5t=4t4x5x+4x=5t+4t.

Đặt fu=5u+4uf'u=5u.ln5+4>0,u.

Ta có f'u>0,ufx=ftt=x.  Ta có 5x2m4=4x.2m=5x4x4.

Đặt hx=5x4x4h'x=5xln54.

h'x=05xln54=05x=4ln5x=x1=log54ln50,566.

Ta có bảng biến thiên của y = h(x)

Có bao nhiêu m nguyên m thuộc [-2023;2023] để phương trình 5^x - 2m = log(căn bậc 4 của 5)(20(x + 1) + 10)  có nghiệm? (ảnh 1)

Dựa vào bảng biến thiên để phương trình có nghiệm 2m3,7733m1,886.

Do m[2023;2023]mm1,886 Số giá trị của m là 2023+1+1=2025.

Câu hỏi cùng chủ đề

Xem tất cả