Xét các số phức z, w thỏa mãn |z| = 3, |iw + 1 – 5i| = 4. Giá trị nhỏ nhất của |z^2 + wz - 9| bằng

Xét các số phức z, w thỏa mãn |z| = 3, |iw + 1 – 5i| = 4. Giá trị nhỏ nhất của z2+wz9  bằng

A. 3515

B. 252

C. 3

D. 4

Trả lời

Đáp án đúng là: C

Ta có iw+15i=4w+5+i=4 .

Đặt u = -w suy ra |u + 5 +i| = 4. Do đó u thuộc đường tròn tâm I(-5;-1) bán kính bằng R = 4.

Giả sử z = a + bi với a,b .

Vì |z| = 3 nên a2+b2=9b293b3 .

Khi đó T=z2+wz9=z2+wzzz¯=zzz¯+w=3u2bi .

Xét các số phức z, w thỏa mãn |z| = 3, |iw + 1 – 5i| = 4. Giá trị nhỏ nhất của |z^2 + wz - 9|  bằng (ảnh 1)

Tập hợp các điểm biểu diễn số phức 2bi là đoạn AB.

Do đó Tmin=3dI,ABR=3 .

Câu hỏi cùng chủ đề

Xem tất cả