Xét hai hình bình hành MNBA và MNCB. Chứng minh A, B, C là ba điểm thẳng hàng

Bài 3.12 trang 37 SBT Toán 8 Tập 1: Xét hai hình bình hành MNBA và MNCB.

a) Chứng minh A, B, C là ba điểm thẳng hàng;

b) Chứng minh B là trung điểm của AC;

c) Hỏi tam giác MAB thoả mãn điều kiện gì để MNCA là một hình thang cân?

d) Lấy điểm D để tứ giác MNDC là hình bình hành. Hỏi tam giác MAB thoả mãn điều kiện gì để MNDA là một hình thang cân?

Trả lời

Xét hai hình bình hành MNBA và MNCB Chứng minh A, B, C là ba điểm thẳng hàng

a) Do MNBA và MNCB là hình bình hành

Suy ra AB // MN, BC // MN nên theo tiên đề Euclid, hai đường thẳng AB và BC trùng nhau

Vậy ba điểm A, B, C thẳng hàng.

b) Do MNBA và MNCB là hình bình hành

Suy ra AB = MN, BC = MN

Mà A, B, C thẳng hàng nên B là trung điểm của AC.

c) Do MNCB là hình bình hành nên NC // MB, từ đó NCB^=MBA^ (hai góc đồng vị). Điều kiện để hình thang MNCA là hình thang cân là MAB^=NCB^ tức là MAB^=MBA^.

Vậy điều kiện để MNCA là hình thang cân là tam giác MAB cân tại M.

d)

Xét hai hình bình hành MNBA và MNCB Chứng minh A, B, C là ba điểm thẳng hàng

Do MNDC là hình bình hành nên ND // MC, từ đó NDC^=MCA^ (hai góc đồng vị). Điều kiện để hình thang MNDA là hình thang cân là NDC^=MCA^.

Vậy điều kiện để MNDA là hình thang cân là MCA^=MAC^ tức là tam giác MAC cân tại M.

Do MB là đường trung tuyến của tam giác MAC nên điều kiện để tam giác MAC cân tại M là MB vuông góc với AC.

Vậy điều kiện để hình thang MNDA là hình thang cân đó là tam giác MAB vuông tại B.

Xem thêm các bài giải Toán lớp 8 sách Kết nối tri thức hay, chi tiết khác:

Bài 10: Tứ giác

Bài 11: Hình thang cân

Bài 12: Hình bình hành

Bài 13: Hình chữ nhật

Bài 14: Hình thoi và hình vuông

Bài tập cuối chương 3

Câu hỏi cùng chủ đề

Xem tất cả