Xác định parabol y = ax^2 + bx + c, (a ≠ 0), biết rằng đỉnh của parabol đó có

Đề bài: Xác định parabol y = ax+ bx + c, (a ≠ 0), biết rằng đỉnh của parabol đó có tung độ bằng −25, đồng thời parabol đó cắt trục hoành tại hai điểm A(−4; 0) và B(6; 0).

Trả lời

Hướng dẫn giải:

Đỉnh của parabol là Δ4a  nên theo bài ra ta có hệ phương trình:

Δ4a=2516a4b+c=036a+6b+c=0b24ac=100.a16a4b+c=036a+6b+c=0b24ac=100.a2a+b=024a+c=04a2+96a2=100.ab=2ac=24a100a2=100.ab=2ac=24aa=0KTMa=1TMb=2ac=24aa=1b=2c=24

Vậy parabol cần tìm là: y = x− 2x − 24.

Câu hỏi cùng chủ đề

Xem tất cả