Xác định a, b, c biết parabol y = ax^2 + bx + c đi qua điểm A(8; 0) và có đỉnh là I(6; −12).
Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A(8; 0) và có đỉnh là I(6; −12).
Lời giải
• Parabol y = ax2 + bx + c đi qua điểm A (8; 0) nên
0 = a.82 + b.8 + c ⟺ 64a + 8b + c = 0 (1).
• Parabol y = ax2 + bx + c có đỉnh là I (6; –12) suy ra:
\(\frac{{ - b}}{{2a}} = 6\)⇒ b = –12a (2).
\(\frac{{ - \Delta }}{{4a}} = - 12\) ⇒ Δ = 48a ⇒ b2 – 4ac = 48a (3) .
Thay (2) vào (1) ta có: 64a – 96a + c = 0 ⟺ c = 32a.
Thay b = –12a và c = 32a vào (3) ta được:
(–12a)2 – 4a.32a = 48a
⟺ 144a2 – 128a2 = 48a
⟺ 16a2 = 48a
⟺ a = 3 (vì a ≠ 0).
Từ a = 3 ⇒ b = –36 và c = 96.
Vậy a = 3; b = –36 và c = 96 thỏa mãn yêu cầu bài toán.