Với giá trị nào của tham số m thì phương trình (2m + 6).x^2 + 4m.x + 3 = 0 có hai nghiệm phân biệt

Câu 8 trang 20 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì phương trình2m+6x2+4mx+3=0 có hai nghiệm phân biệt?

A. m<32 hoặc m > 3;

B. 32<m<3;

C. m < - 3  hoặc 3<m<32 hoặc m > 3;

D. 3<m<32 hoặc m > 3.

Trả lời

Đáp án đúng là A

+) 2m + 6 = 0 ⇔ m = –3, khi đó phương trình trở thành –12x + 3 = 0 ⇒ x = 14. Suy ra phương trình chỉ có một nghiệm duy nhất. Do đó không thỏa mãn.

+) 2m + 6 ≠ 0 ⇔ m ≠ –3

Khi đó phương trình 2m+6x2+4mx+3=0có hai nghiệm phân biệt khi và chỉ khi

∆ = (4m)2 – 4.3.(2m + 6) > 0 hay 2m2 – 3m – 9 > 0

Tam thức bậc hai f ( x ) = 2m2 – 3m – 9 có hai nghiệm phân biệt x1 = 3 và x2 = 32,

a = 2 > 0 nên f ( x ) > 0 với x < 32 hoặc x > 3 (2)

Từ điều kiện (1) và (2) suy ra m < - 3  hoặc 3<m<32 hoặc m > 3.

Vậy đáp án đúng là C.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Bài 1: Quy tắc cộng và quy tắc nhân

Bài 2: Hoán vị, chỉnh hợp và tổ hợp

Bài 3: Nhị thức Newton

Câu hỏi cùng chủ đề

Xem tất cả